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ABSTRACT 
Developments in statistics and computing as well as their application to genetic 
improvement of livestock gained momentum over the last 30 years. This paper 
reviews and consolidates the statistical methodology used in animal breeding. This 
paper will prove useful as a reference source for animal breeders, quantitative 
geneticists, and statisticians working in these areas. The estimates of genetic and 
phenotypic parameters viz. heritability, genetic and phenotypic correlation are used 
to determine the method of selection, the intensity of selection for different traits of 
interest, and prediction of selection response. The unbiased property of ANOVA 
estimators demands no distributional assumptions of the random effects and the 
residual error terms in a model but all sampling variance results have been 
developed based on assuming normality. The parameters are estimated by 
maximizing the logarithm of the likelihood function. The estimates of predictors of 
the random effects are expected to be more efficient. The drawbacks of ML are 
first, that it is downwardly biased because the loss of degrees of freedom due to 
estimating fixed effects is not taken into account. The estimates of predictors of the 
random effects are expected to be more efficient. The drawbacks of ML are first, 
that it is downwardly biased because the loss of degrees of freedom due to 
estimating fixed effects is not taken into account. Maximum likelihood (ML) 
restricted maximum likelihood and minimum norm quadratic unbiased estimations 
(MINQUE) are all preferred to ANOVA because they have built-in properties. 

mailto:amanuelbekuma11@gmail.com
http://www.gjasr.com/index.php/GJASR/article/view/152
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


 
C.V. Singh 

 
GLOBAL JOURNAL OF ANIMAL SCIENTIFIC RESEARCH, 11(1), 64-88 

 

Pa
ge

65
 

MINQUE may considerably be better than the analysis of variance procedures. 
DFREML was the first public package to implement the derivative-free REML, and 
it became the standard in the field to which every other program is compared. Its 
unique feature is the likelihood ratio test for testing the significance of variance 
component estimates. The use of ML and REML in animal breeding has brought 
about a change in the random effects fitted in the infinitesimal additive genetic 
model. In traditional ANOVA and related methods, (co) variance is described in 
terms of random effect due to single parent (e.g., sire model) or both parents (sire 
dam model), uniquely partitioning the total sum of the squared deviations of the 
observations from the grand mean into the sum of squares contributed by each 
factor in the design. However, over the last decade, considerable research effort has 
concentrated on the development of specialized and efficient algorithms. This has 
been closely linked to advances in the genetic evaluation of animals by Best Linear 
Unbiased Prediction (BLUP). However, ML and REML allow the random effect of 
models to be expressed in terms of the genetic merit or breeding value of animals. 
These models are called individual animal models (IAM) and incorporate 
information on the relationship between all animals. Animal Model (AM) has 
influenced the use of the mixed model methodology in the statistical analysis of 
animal breeding data considerably. The AM includes a random effect for the 
additive genetic merit of each animal, both for animals with records and animals 
which are parents only, incorporating all known relationship information in the 
analysis.  
Keywords: BLUP, DFREML, REML, Animal Model and MINQUE 
 
INTRODUCTION 
The choice of a criterion of selection depends on the heritability estimates, 
availability of the required information, and the nature of the traits under 
consideration. If the economic traits are to be included in a breeding program, 
accurate estimates of breeding values will be needed to optimize the selection 
program. This requires knowledge of variance and covariance components (Raheja 
et al., 2000). Traditionally, variance and covariance components were estimated by 
ANOVA and regression methods.  
Analysis of variance estimators such as Henderson’s methods 1, 2, and 3 are 
appropriate in the data where some individuals lack records on some traits as a 
result of selection on one and other traits. The main assumption of random sampling 
underlying standard ANOVA-type procedures does not hold. Therefore, the 
estimates of variance and covariance obtained from these methods are expected to 
bias by selection (Robertson, 1977; Meyer and Thompson, 1984). The method of 
least squares (LS) analysis of variance based on paternal half-sib correlation has 
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widely been used in India for estimating the variance components for animal 
breeding data.  
In contrast, with the analysis of variance estimators, maximum likelihood estimators 
seem to be free of some forms of selection bias (Schaeffer and Soong, 1979).  
Minimum Norm Quadratic Unbiased Estimation (Rao, 1971) and restricted 
maximum likelihood (Paterson and Thompson, 1971) can be used to account for all 
relationship (Henderson, 1985) which result in an estimate that is less biased by 
selection and more precise than estimates obtained by traditional methods (Keele 
and Harvey, 1989). An important advantage of REML, utilizing relationship is that 
the assumptions that animals (sires) are unrelated and are non-inbred need not be 
made. Estimating covariance matrices based on mixed model methodology has the 
basic advantage of using identical models in the prediction of genetic merit and 
variance component estimation for all possible models.  
Reliable estimates of variance and covariance components are also needed for 
obtaining accurate estimates of genetic and phenotypic parameters. The estimates of 
genetic and phenotypic parameters viz. heritability, genetic and phenotypic 
correlation are used to determine the method of selection, the intensity of selection 
for different traits of interest, and prediction of selection response. Parameter 
estimates from a sample of data may vary depending on the kind of analysis.  
Most of the reported heritability are based on the ratio of variance components 
estimated mainly by Henderson’s method 3. In India, estimates of genetic and 
phenotypic parameters are also based on least squares analysis of variance and the 
scientific reports on the use of the restricted maximum likelihood method are scanty 
(Raheja et al., 2001). The available literature on the various aspects of the present 
study has been presented under the following heads.  
 
Statistical Methods of Estimating Genetic and Phenotypic Parameters  
Fisher’s (1918) paper on the theory of quantitative genetics was an important 
contribution to the development of variance component theory. He made inceptive 
use of the term “variance and analysis of variance”. In his book “statistical methods 
for research workers”, he developed the analysis of variance method from the sum 
of squares. Eisenhart (1947) made the first precise distinction between the “fixed 
and random” model (Eisenhart I and II) and before that the name “mixed model” 
had not been suggested before 1947. Eisenhart’s model III described mixed models. 
In the absence of methods for cross-classified, mixed model data with missing sub-
classes; Henderson (1953) derived 2 methods, known as a method I for a random 
model and method 3 for a mixed model. He also presented method 2, another 
simple method for the mixed model, but with severe restrictions on the model. 
Henderson’s (1953) methods of estimation from unbalanced data are known as 
Henderson Model I, II, and III. In the model I all effects are random using quadratic 
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forms or canonical forms i.e., sum of squares which is analogous to the sum of 
squares of balanced data. Model II is a fixed model, which assumes no interactions 
of sub-classes of fixed effects within random effects etc. It is an adaptation of model 
I and model III is the method of fitting constants for a mixed linear model. Data 
arising in animal genetics are usually not balanced but methods analogous to the 
ANOVA have been developed for unbalanced data. In particular, Henderson’ 
(1953) method 3 of fitting constants has found extensive use.  
The approach replaces the sum of squares in the balanced ANOVA with quadratic 
forms involving least-squares solutions of effects for which variances are to be 
estimated. Its widespread application was greatly aided by the availability of 
general least squares computer programs tailored towards applications commonly 
arising in animal breeding.  
Traditionally the phenotypic covariance between relatives has been estimated using 
analysis of variance (ANOVA) or analogous procedures. In general, these require 
that individuals can be assigned to groups with the same degree of relationship for 
all members. Family structures considered most often are, for instance, paternal 
half-sib group or parents and their offspring. Using ANOVA, the covariance among 
members of a family or groups of relatives is usually determined as the variance 
components between groups.  
In fields such as animal breeding, this evolution has come about because ANOVA 
and related methods are based on several assumptions that are commonly violated 
in typical animal breeding data sets. These assumptions are (1) that the data are 
balanced, i.e., there is equal number of individuals in each subclass (2) that the data 
are a random sample from an unselected population (3) that the data structure 
conforms to certain standards or stereotypical designs, e.g., paternal half-sibs or 
parent(s) offspring and therefore, the only type of relatedness is exploited in the 
analysis (Shaw, 1987; Mayer, 1989a; Searle, 1989). However, animal breeding data 
are typically unbalanced, being from selection experiments or livestock 
improvement schemes in which animals are continuously culled for poor 
performance and are related in a variety of ways. Hence estimates from ANOVA 
and related types of analysis are biased (Shaw, 1987; Meyer, 1989a).  
From 1956 to 1968 several workers developed formulae for sampling variances of 
ANOVA estimators and Henderson methods estimators. The unbiased property of 
ANOVA estimators demands no distributional assumptions of the random effects 
and the residual error terms in a model but all sampling variance results have been 
developed based on assuming normality. The ANOVA method for balanced data 
was well known and convenient estimation methods for nested classifications with 
unequal numbers had been used. The ANOVA estimators from balanced data are 
minimum variance unbiased on assuming normality of the random effects and error 
terms. Later it was shown that even without normality, ANOVA estimators are 
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minimum variance, quadratic and unbiased. Despite the attractiveness of their 
properties, ANOVA estimators suffer from one major drawback, i.e. negative 
estimates of variance components. Searle (1989) and Searle et al. (1992) have made 
a good review of the development of components during this period. The ANOVA 
methods and Henderson’s methods do not have general analytical properties that 
can be used to determine the relative optimality of any one application of the 
general ANOVA method over another and they also lack distributional properties.  
Later with the development of Rao’s MINQUE, Hartley and Rao’s ML methods, 
and Patterson and Thompson’s REML, there has been much interest in employing 
better methods than the ANOVA-type estimators. These were all quadratic, 
translation invariants, unbiased estimators with no known optimum properties 
concerning sampling variance. Over the last decade, statistical methods employed to 
estimate (co) variance components for continuous traits in most fields, such as 
animal breeding and population biology, have generally evolved from analysis of 
variance (ANOVA) and related types of analysis (e.g. the general linear model) to 
maximum likelihood (ML) and related methods (Shaw, 1987; Meyer and Hill, 
1992), with the increasing interest and necessity for dealing with multi-trait 
problems it has become imperative that more attention was paid to estimation of 
environmental and genetic covariance matrices for multiple traits. An increase in 
the power of computers and the development of specialized algorithms have aided 
this evolution (Meyer, 1989a, b; Klassen and Smith, 1990).  
In contrast to ANOVA, evidence has been accumulating which indicates that ML 
and REML may have considerable power to eliminate selection bias, consequently, 
Henderson (1984) attempted to derive feasible computational strategies for these 
methods applied to the multiple trait problems. This has resulted in the derivation of 

a method that involves computing quadratics in 
Α

µ  and 
Α

c , BLUP solutions coming 
from the mixed model equations. In light of these shortcomings of ANOVA 
methods, alternative methods like maximum likelihood (ML), restricted maximum 
likelihood (REML), and minimum norm quadratic unbiased estimation (MINQUE), 
etc. were considered for the estimation of variance components. Interest in ML and 
related methods have risen because they have based on sufficiently consistent, 
asymptotically normal, and efficient statistics (Harville, 1977; Kennedy, 1981). 
Furthermore, constraints on parameters are imposed in ML to exclude out-of-
bounds (Harville, 1977; Shaw’ 1987; Searle, 1989; Meyer, 1990). However, out-of-
bounds, estimates raise doubts about the validity of the model fitted (Shaw, 1987; 
Searle, 1989; Klassen and Smith, 1990).  
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Least Squares Method 
The method envisages developing estimators by mathematically minimizing the 
error variance. Thus, we get estimates which are having minimum variance are the 
most efficient. They are also generally unbiased. Another advantage of least squares 
is that there is no requirement of knowing the distribution of the observations or 
variables. The estimation from non-orthogonal data by least squares is satisfactory 
for fixed effects. However, for estimating or predicting the random effects, more 
efficient methods have been developed.  
 
SML Package 
During the 1960s, this program by Harvey was a forerunner of present evaluation 
and estimation programs. It computed simple statistics, solutions, and variance 
components and tested hypotheses to mixed models with diagonal variance, and co-
variance matrices. LSML, which was extensively used and cited until a few years 
ago, used a dense matrix inversion with absorption (Gaussion-elimination) of one 
effect and variance component estimation by Hendrson-3 (Henderson, 1984).  
 
Maximum Likelihood (ML)  
Fisher (1925) derived the method of maximum likelihood. Its general application to 
the estimation of variance components took around 40 years since its derivation. 
Herbach (1959) derived explicit maximum likelihood estimators for certain 
balanced data models and took account of the necessity that such estimators must be 
non-negative (because the method of ML prescribed maximization over the 
parameters space and variance components are non-negative).  
The likelihood function is the likelihood (or chance) of simultaneous occurrence of 
observations and is generally the product of the density distribution function of the 
observations (variables). The parameters are estimated by maximizing the logarithm 
of the likelihood function. The estimates of predictors of the random effects are 
expected to be more efficient. The drawbacks of ML are first, that it is downwardly 
biased because the loss of degrees of freedom due to estimating fixed effects is not 
taken into account. This loss can be severe if there is a large number of fixed effects 
in the model (Harville, 1977; Kennedy, 1981; Meyer, 1990). Secondly, ML may be 
further biased because data are required to be normally distributed (Shaw, 1987; 
Harville, 1977). However, Harville (1977) inferred without proof that ML and 
related methods may be appropriate even when the distribution of data is not 
specified. Proof, that in certain instances ML and related procedures are not biased 
by asymmetrical distribution, was provided by the simulation studies of Banks et al. 
(1985) and Westfall (1987).  
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Minimum Norm Quadratic Unbiased Estimation (MINQUE) 
Townsed (1968), Harville (1969), and Townsed and Searle (1971) began the 
attempts on finding the minimum variance quadratic unbiased estimators of 
variance components. This was followed by a series of papers on minimum variance 
estimation and minimum norm quadratic unbiased estimation. Without making 
distributional assumptions about the data, it is based on seeking quadratic forms 
(Y’AY) to estimate variance components in such a way that (i) A is symmetric, (ii) 
Ax = 0 to have Y’AY free of the fixed effects (iii) Y’AY is unbiased, and (iv) 
minimizing a Euclidean norm which under normality equates to a minimum 
variance property. Estimators obtained by MINQUE are functions of a priori values 
used in place of variance components in the estimation procedure itself. This may 
lead to different sets of estimators from the same data and the same model with 
different priori values. MINQUE estimators are unbiased. MINQUE equations are 
linear and can be solved without interaction for a given set of a priori values. Searle 
et al.  (1992) thought that MINQUE is not a practical method of estimating variance 
components.  
 
Restricted Maximum Likelihood (REML) 
Bias in ML caused by failure to take account of the loss of degrees of freedom due 
to fitting fixed effects has been corrected for unbalanced data by the modified 
method called restricted maximum likelihood (REML) developed by Patterson and 
Thompson (1971). Thompson (1962) first developed REML by introducing the idea 
of maximizing that part of the likelihood, which is invariant to the location 
parameters of the model, i.e. to the fixed effects. Thus, the basic idea of REML 
estimation is that of estimating variance components based on residuals calculated 
after fitting by ordinary least squares first for the fixed part of the model. It may 
also be viewed as maximizing a marginal likelihood function (Searle et al., 1992). 
REML has emerged as the method of choice in estimating covariance matrices in 
animal breeding. Its widespread use has only become possible with the increasing 
computer power on one hand and the availability of free software packages on the 
other. REML is equivalent to performing ML on data that have been standardized to 
have a mean of zero (Meyer, 1989a; James, 1991). These modifications lead to 
estimates being identical to those of ANOVA if data are balanced and if out-of-
bounds estimates are not excluded. REML shares all the desirable properties of ML 
(Shaw, 1987). Estimating covariance matrices based on mixed model methodology 
has the basic advantage of using identical models in the prediction of genetic merit 
and variance components estimation for all possible models, i.e. also in multi-trait 
cases.  
REML is more difficult computationally than ML, as it requires including the fixed 
effects (Kennedy, 1981; Mayer, 1989a and 1993), except for a simple and balanced 



 
C.V. Singh 

 
GLOBAL JOURNAL OF ANIMAL SCIENTIFIC RESEARCH, 11(1), 64-88 

 

Pa
ge

71
 

design. REML estimates require the numerical solution of a constrained non-linear 
optimization problem. Analytical solutions are impossible and iterative procedures 
must be used (Harville, 1977; Kennedy, 1981; Klassen and Smith, 1990, Meyer, 
1993).  
Iterative methods that are both first and second derivatives have been found to cover 
the quickest (Meyer, 1989a, 1990; Klassen and Smith, 1990). However, these are 
difficult to calculate in the highly unbalanced data typically found in animal 
breeding (Klassen and Smith, 1990). Therefore, it is more common to use numerical 
techniques e.g. the simplex method or statistical approximations of either first or 
second derivatives, i.e. Quasi-Newton-Raphoson method (Graser et al., 1987; 
Klassen and Smith, 1990).  
Maximum likelihood (ML) restricted maximum likelihood and minimum norm 
quadratic unbiased estimations (MINQUE) are all preferred to ANOVA because 
they have built-in properties. MINQUE may considerably be better than the analysis 
of variance procedures. However, ANOVA procedures require fewer computations 
than MINQUE (Keele and Harvey, 1989). ML and REML have been the methods of 
choice over MINQUE because in MINQUE we get different values of estimated 
variance with different sets of pre-assigned values for the same data. REML 
estimates will be more precise than MINQUE (taking all prior values for 
components of variance and covariance set to zero except for the environmental 
variance). However, REML is less biased by selection than MINQUE (taking all 
prior values for components of variance and covariance set to 1) Sorensen and 
Kennedy, 1984. MINQUE1 offers a computational advance over REML using the 
iterative MINQUE algorithm because MINQUE1 requires the same computations as 
one iterate of iterative MINQUE. REML by the expectation-maximization 
algorithm or the derivative-free algorithm requires fewer computations per iteration 
than MINQUE1. MINQUE 0 would be a useful method for estimating components 
of variance and covariance for characters with low h2 such as reproductive traits in 
livestock (Keele and Harvey, 1989). The favored characteristics of REML over ML 
are (i) with balanced data, REML equations reduced to the same equations as are 
used in ANOVA estimation, and (ii) further REML takes account of the degree of 
freedom used for estimating fixed effects. For example, in a simple sample of x in 

N10 (N, e
2σ ), the REML estimate of S2 is ∑ 






 −

2

XX i /(n-1), whereas the ML 

estimator is ∑ 





 −

− 2

XX i /n. In this simple case, REML is unbiased, but that is not 

the general rule, because nothing is unbiased after iteration, neither in ML nor 
REML. The advantage of ML over REML is that ML procedure includes providing 
ML estimation of fixed effects. REML method provides no such estimator.  
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    Both ML and REML are based on maximizing the likelihood of error contrasts 
(Paterson and Thompson, 1971; Smith and Graser, 1986; James, 1991) of note is 
that, as for other methods, the accuracy and precision of REML estimates increase 
with sample size regardless of the design and the criterion for choosing estimates 
(Shaw, 1987). However, even with the best method of analysis, variance 
components are only as good as the data on which they are based (Meyer, 1989a, 
and 1990).  
 
REML algorithms  
Methods that use both first and second derivatives, i.e. geometrically speaking 
information on slope and curvature of the function, have been found to cover the 
quickest a special case is Fisher’s method of scoring which requires expected rather 
than actual values of the second derivatives, which are of often easier to calculate. 
This has been used by Patterson and Thompson (1971) and, for animal breeding 
application, in REML algorithms described by Thompson (1973), Schaeffer et al., 
(1978), Meyer (1983, 1985), and Cue (1986), REML algorithms are often 
formulated in terms of Henderson’s (1973) mixed model equations (MME).  
 
Canonical Transformation (CT) 
A re-parameterization of the model or a transformation applied to the MME can 
often reduce computational requirements substantially. For multivariate analysis, a 
transformation of the data with corresponding effects is available for special cases.  
When all traits are recorded for individuals at the same or strictly corresponding 
time(s), design matrices x and z are equal for all traits, consider p traits for a model 
with one random factor, and let T and E (of size p × p) denote the covariance 
matrices of random effects and residuals, respectively. As outlined by Hayes and 
Hill (1980), a canonical decomposition of T and E then yields a transformation to 
new traits, so-called canonical variables, which are both genetically and 
phenotypically uncorrelated.  
This reduces the multi-trait analysis to a series of corresponding univariate analyses. 
REML analysis exploiting the canonical transformation has been described for the 
method of scoring (Meyer, 1985); the EM-algorithms with tridiagonalization (e.g. 
Taylor et al., 1985) or diagonalization (Van Randen and Freeman 1986; Lin, 1987) 
of the coefficient matrix and the derivative-free approach (Mayer, 1988c, 
Thompson and Juga, 1988). For the latter algorithm, also proved useful for models 
involving more than one random effect by reducing the number of non-zero off-
diagonal elements in the coefficient’s matrix and thus the computational effort to 
evaluate log L.  
A special algorithm for diagonal E, i.e., zero residual co-variances, has been 
described by Schaeffer et al. (1978). This is the case when different traits are 
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measured on different sets of animals for an example growth rate of male and 
female calves in beef cattle. In special cases, this constellation can also be achieved 
through a transformation of the data. For instance, when traits are recorded 
sequentially, i.e. there are missing records but each animal with the same traits t has 
all records 1 to t, the inverse of the Cholesky, decomposition of E provides a 
transformation to traits with uncorrelated residuals (Schaeffer, 1986).  
 
Expectation maximization (EM) algorithm 
Even for simple models, the calculation of excepted derivatives has proven to be 
computationally highly demanding if not prohibitive. Hence, to date, most REML 
applications are based on the so-called expectation maximization (EM) algorithm 
(Dempster et al., 1977) which, implicitly, requires first derivatives of the likelihood 
to be evaluated. The resulting estimators then have the form of quadratics in the 
vector of random effects solutions obtained by BLUP for the assumed values of 
variances to be estimated, which are equated to their expectations.  
For the mixed linear model, REML estimates of variance components using the EM 
algorithm can be obtained as:  

∧
−

∧∧

= µµσ µ
1

'2

A  / [q-λtr (A-1C)] 
'2 ∧∧

= eeσ e’ /[NDF-λtr (A-1C)] 

=
∧

µσ
2

 [y’y-y’Xb-y’Zu] / (N-r (X)] 

With )'(''
∧∧∧∧

−=−−= µZyMuZbXye . Alternative forms are (Harville, 1977).  
∧

−
∧∧

= µµσ µ
1

'2

[ A + σ2 etr (A-1C)]/q  
 
The EM algorithm is slow to converge, especially for low heritabilities. However, 
modifications have been suggested that improve its performance without increasing 
the computational burden considerably. These included a re-parameterization 
estimating variances of family means rather than variances between families, as 
described by Thompson and Meyer (1986) and Harville and Callanan (1988) who 
referred to it as ‘linearization’. For a multivariate analysis, Robinson (1988) used a 
so-called secant algorithm that approximates the matrix of second derivatives 
iteratively Meyer (1986) combined an EM step to estimate the residual components 
with a method of scoring step to estimate co-variances for random effects. 
Schaeffer’s (1979), common intercept approach attempted to reduce the number of 
interactions required by predicting changes in estimates.  
Though computationally less demanding than the method of scoring, the EM 
algorithm, in general, requires the direct inverse of matrix of size equal to the 
number of levels of all random effects in each round of interaction. This imposes 
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severe restrictions on the kind of analysis feasible, especially for multivariate 
analysis. Simplifications have been described for special cases. 
The familiar mixed model equations (MME) are used widely for variance 
component estimation with REML algorithm by nearly all animal breeders. As 
noted by Patterson and Thompson (1971), REML estimators can be expressed in 
terms of latent roots of matrices in the MME. For a model with one random effect, 
Dempster et al.  (1984) described the use of a singular value decomposition of the 
MME to estimate variances via the EM algorithm. With the strategy, the major 
computational buden is the calculation of eigenvalues and eigenvectors. However, 
this is required only once per analysis, and subsequent iterations to solve the above-
written equations are fast. Along the same lines, Smith and Graser (1986) advocated 
the use of a Householder transformation to reduce the coefficient matrix in the 
MME to tridiagonal rather than diagonal form, which is computationally less 
demanding. Thompson and Meyer (1988) extended this approach to Reduced 
Animal Model (RAM).  
For models with two random effects, partitioned matrix results have been utilized to 
reduce the size of the matrix to be inverted in each round of iteration to the number 
of levels of one of the random effects (Meyer, 1987). Another approach has been to 
employ a nested two step procedure, combining an EM-step to estimate two 
variance components, as described above, with a direct search for the maximum 
likelihood function for the third component (Smith and Graser, 1986). 
 
Derivative-free REML (DF-REML) 
The minimum or maximum of a function can be found without knowing its 
derivatives using numerical techniques called derivative-free (DF) algorithms 
(Meyer 1989a, 1990). The use of a derivative-free approach for REML estimation 
of variance components has been considered first by Graser et al.  (1987) for an AM 
with animals as the only random effect and univariate analysis. For this case, the 
REML log-likelihood is:  

Log L = 
2
1

− [const +q log σ2μ + NDF log σ2e + y’Py + log B + log A ] 

with  P = S-SZCZ’s and B = C-1. They showed that the sum of squares of residuals, 
y’Py, and log determinant of the coefficient matrix, log B , can be evaluated 
simultaneously by augmenting B by the vector of right-hand sides and the total sum 
of squares, y’y, and absorbing all rows and columns into the latter. In addition, the 
residual variance can be estimated directly as y’Py/NDF so that Log L can be 

maximized concerning one parameter only, the variance ratio λ, estimating µσ
2∧

 

subsequently as e

2∧∧

σλ . This has been extended to models including additional 
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random effects, such as an environmental effect due to litter or a maternal genetic 
effect, and to multivariate analyses (Meyer, 1988 b,c).  
The DF approach using the simplex procedure of Nelder and Mead (1965) has 
proved to be easy and robust (against starting values far from the estimate) for use 
with animal breeding data (Meyer, 1989b, 1991). This procedure allows the simplex 
method to re-scale itself automatically in each iteration, changing shape and size 
according to the landscape of the surface searched. This adaptability is achieved by 
the combination of reflection, expansion, and contraction (Meyer, 1990). 
Furthermore, it is highly flexible; accommodating a wide range of models of 
analysis, in particular facilitating analyses under the animal models, differing in 
random effects fitted in assumptions about covariance between them, and is of 
interest for the analysis of animal breeding data (Meyer, 1989a, 1993).  
 
DFREML Package  
DFREML, written by Meyer (1988a), was the first public package to implement the 
derivative-free REML (Smith and Graser, 1986). Extensively cited, it became the 
standard in the field to which every other program is compared. Its unique feature is 
the likelihood ratio test for testing the significance of variance component estimates. 
The documentation is extensive, and it is the only one that has descriptions of all 
subroutines in the package. DFREML appears very clean of errors. DFRML 
supports only 10 classes of models, although the important models are included. 
Also learning curve is high (Misztal, 1994a). The most expensive procedure in a 
REML program is the computation of the determinant or trace. DFREML computes 
the determinant by Gaussian elimination and other packages by matrix factorization.  
 
Derivative-free v/s Expectation Maximization  
DF and EM denote slightly different concepts (Misztal, 1992). DF denotes all 
maximization methods that rely only on the value of the maximized function 
whereas EM is one of the methods using both the values of the function plus its first 
derivative. To make a more valid comparison, EM will be extended to EM type, 
which includes all methods that use the first derivative, including accelerated EM. 
The value of maximum in DF has at most only half as many significant digits as the 
maximized function. Poor numerical conditioning could lead to false maxima, 
especially for multiple traits, and when the correlations between variance 
components are high. One could implement EM-type algorithms by computing the 
first derivative numerically, disregarding accuracy, using many components +1 
function evaluations for each step of EM type. In EM-type, judicious 
implementation of the sparse inversion, where only selected inverse elements are 
computed, runs at most only twice as slow as a single evaluation of the likelihood 
function under DF. Under careful implementation, EM-type algorithms should be 
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faster and more reliable than DF algorithms, although DF is simpler to implement 
for general models. Each algorithm operates in quadratic time about the number of 
equations and none is suitable for application to very large data sets (Misztal, 1992). 
 
Derivative and Derivative-Free Maximization in REML 
The speed and accuracy of the REML variance component estimation are dependent 
on the maximization strategy. The popular derivative-free (DF) maximization used 
in DFREML is very slow in multiple traits as thousands of rounds of iteration may 
be needed to obtain convergence. Assuming that the logarithm of the restricted 
likelihood function (L) is approximately quadratic, Misztal (1994a) calculated that 
the number of steps to achieve convergence in t-traits is –T2 with good DF 
algorithms, but it does not depend on t in better derivative (D) algorithms. Better 
DF algorithms included Powell and Tosenbrock and better D algorithms included 
quasi-Newton or Broyden (as nonlinear solving). The latter includes the accelerated 
EM algorithm. These costs are underestimated because the L function is 
approximately quadratic only close to the maximum. Derivative-free multivariate 
REML algorithms are computationally expensive, especially, if the likelihood 
function contains many parameters to be estimated. For example, Misztal (1994b) 
showed as the number of traits increases the derivative-free methods become less 
efficient than methods using first derivatives, i.e., procedures based on the EM 
algorithm. One round of a derivative-free method involves computing the 
determinant of the coefficient matrix of the mixed model equations. In the EM 
algorithm, elements in the sparse inverse of this matrix are needed. Worse 
convergence properties of DF can be seen intuitively by noting that D can sense a 
desirable direction (gradient) in one round, while DF has to do approximately t2 
rounds to probe all the dimensions. The combined costs of factorization/inversion 
and maximization are needed for at least t3 and t5 numerical preparations for better 
D and DF algorithms, respectively. Programs using D algorithms are not common 
because DF algorithms are easier to implement and inversion before FSPAK 
became available, was very expensive.  
Results of analysis with many traits and the general model are not likely to be 
accurate. First, the accuracy of the factorization /determinant decreases as the traits 
are becoming more linearly dependent and the MME matrix is larger (Misztal, 
1994a). Second, the maximization method may fail. “Faster” DF (such as Powell or 
Tosenbrock as opposed to simplex) or D (Newton-Raphson or quasi-Newton as 
opposed to fixed point = EM) algorithms may coverage slower far away from the 
maximum, and many need a fall back to slower algorithms in early rounds to avoid 
divergence. Also, DF’s solutions are less accurate than D because finding a 
maximum, where the maximized function is flat by definition, is less accurate than 
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finding a zero of a derivative, which is not flat. Together, a general-model REML 
and particularly DF may be too expensive and inaccurate with more than 2-4 traits.  
With many traits, the only feasible procedure at this time is canonical 
transformation (CT) where the computing cost increases only linearly with the 
number of traits but only certain models are supported. This procedure is also 
insensitive to high correlations between the traits, but it is restricted to analyses with 
the same model for each trait, all traits recorded, and one random effect. CT is 
supported by DFREML.  
The CPU time taken is relatively small for canonical transformation, increasing 
steeply for DF, D being in between. If a single trait REML took 1 minute of 
computing time, a 2-trait REML would take at least 1 hr in DF, 8 minutes in D, and 
2 minutes in CT. For 5 traits, these times would be 2 days, 2 hrs., and 5 minutes, 
respectively, and for 15 traits 527 days, 2 days, and 15 minutes, respectively. If the 
memory required were 2 Mbytes in single traits for D of DF it would be 8 Mbytes in 
2 traits, 50 Mbytes in 5 traits, and 450 Mbytes in 15 traits (Misztal, 1994a).  
 
Average Information Restricted Maximum Likelihood (AI-REML) 
The use of numerical approximations based on Expectation- Maximization 
algorithms, which calculate expected second derivatives, has proved to be highly 
demanding of computation, if not prohibitively demanding, and slow to converge, 
especially for traits of low heritability (Meyer, 1989a, 1990). However, Johnson and 
Thompson (1995) have recently developed univariate IAM using the average of 
observed and expected information. Sparse matrix techniques are employed to 
derive the coefficient matrix required to calculate the first derivative of the 
likelihood. The matrix of second derivatives is called the observed information 
matrix. The second derivatives of the likelihood are calculated by averaging their 
observed and expected values. This leads to an algorithm called Average 
Information REML (Al-REML), which is a compromise between the Newton-
Raphson and the Fisher scoring algorithms (Madsen et al., 1994; Johnson and 
Thompson, 1995). The expectation of this matrix is the Fisher information matrix. 
Both the observed and the expected information matrices involve terms that are 
difficult to compute. The development of Al-REML algorithms followed the 
observation that the average of observed and expected information matrices as the 
second derivative is considerably easier to compute than either of the components 
due to the cancellation of some terms (Madsen et al., 1994; Johnson and Thompson, 
1995). Al-REML was extended to a multivariate analysis by Madsen et al.  (1994). 
These extensions to multivariate algorithms were from similar mathematical 
backgrounds.  
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DF-REML versus Al-REML 
Criticisms of the use of DF algorithms have been based on their slow convergence 
in multivariate analyses and poor numerical properties, and this has led to an 
interest in other methods (Madsen et al., 1994). Particular criticisms of the simplex 
procedure are that its performance becomes less successful as the dimension of 
search increases with increasing numbers of traits and random effects in the model 
(Meyer, 1989b, 1991). In test runs, the Al-REML algorithm gave almost identical 
parameter estimates as DF-REML but with a considerable reduction in computer 
time. However, Al-REML method converged faster (341.2 s CPU time) than the 
DF-REML (1837.6s CPU time) on a Cray C92A computer. The Al-REML 
algorithm converged in 13 or fewer rounds for all the analyses conducted, while 
DF-REML used 472 rounds for the bivariate analyses (3, 4, and 5 traits DF-REML 
analyses were not run due to constraints on CPU time) (Madsen et al., 1994). Even 
though the Al-REML algorithm requires more computations per round of iteration, 
the savings in computer time were considerable. In the bivariate analyses, the Al-
REML algorithm used less than 20% of the computer time used by the DF-REML 
algorithm. Furthermore, algorithms using the second derivate of the likelihood 
provide estimates of sampling variance of parameters as a by-product. In contrast, 
for DF-based algorithms, the additional computational effort is required to estimate 
sampling error; the extra effort can be quite considerable if a large number of 
parameters are estimated (Mayer and Hill, 1992). In conclusion, Al-REML 
algorithms are currently more efficient in the use of computer time and resources 
than those based on DF multivariate analysis of two or more traits with one random 
effect. However, for univariate analysis, DF-REML performs similarly to Al-
REML. Despite savings in computing time and resources, multivariate IAM Al-
REML is at an early stage of development compared with the DF-REMK methods 
of Meyer (1989a) as described by Misztal (1994a). Further work is needed in 
developing Al-REML to the current standard of DF-REML if Al-REML is to be a 
worthwhile competitor.  
 
Comparing parameter estimates from ANOVA and related types with those 
from REML 
Few comparisons have been reported of parameter estimates based on REML fitting 
an IAM and traditional sire models based on ANOVA and its related types. 
Chauhan (1991) studied a comparison of estimates of heritability of milk yield of 
Murrah buffaloes from restricted maximum likelihood and Henderson’s methods III 
and revealed that because of its desirable properties, the REML estimator was 
considered to be more appropriate than that of Hendersons method III. Raheja 
(1992) made a comparative study of variance, and covariance components of 
economic traits between different lactations estimated from single and multi traits 
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procedures and recommended restricted maximum likelihood or maximum 
likelihood multi traits procedures because they make use of all data available and 
account for bias in later lactation records due to selection on dairy performance. 
Raheja et al., (2000) reported a comparison of four methods of variance 
components estimation for heritability of economic traits in Murrah buffaloes and 
revealed that the likelihood method always yields positive estimates of heritability 
and therefore should be the method of choice over the fitting constants procedure 
(HM3) for imbalance data in mixed models. Jain and Sadana (2000) studied sire 
evaluation using animal models and conventional methods in Murrah buffaloes and 
revealed that deciding on the method of sire evaluation to be used for selecting sires 
with high breeding values criteria of the rank correlation could be misleading and 
comparison of selected sires likely to give a variable picture. The best linear 
unbiased prediction method under multi traits animals incorporating first lactation 
milk yield with first service period as co-variable and age at first calving in the 
model was found to be more efficient and accurate for sire selection in Murrah 
buffaloes.  
Some considerations in practice of various methods of estimation.  
The more refined methods have definite utility. It should be examined whether the 
type of data we have is suitable for analysis under a method: (i) while using iterative 
methods, one should be sure that the iteration will converge, and (ii) the estimates 
should be under global maximum and not under a local maximum of the likelihood 
function and time and cost of computing. 
 
Animal Model  
The use of ML and REML in animal breeding has brought about a change in the 
random effects fitted in the infinitesimal additive genetic model (Henderson, 1988; 
Foulley, 1990). In traditional ANOVA and related methods, (co) variance is 
described in terms of random effect due to single parent (e.g. sire model) or both 
parents (sire dam model), uniquely partitioning the total sum of the squared 
deviations of the observations from the grand mean into the sum of squares 
contributed by each factor in the design (Harville, 1977; Shaw, 1987). However, 
over the last decade, considerable research effort has concentrated on the 
development of specialized and efficient algorithms. This has been closely linked to 
advances in the genetic evaluation of animals by Best Linear Unbiased Prediction 
(BLUP). However, ML and REML allow the random effect of models to be 
expressed in terms of the genetic merit or breeding value of animals. These models 
are called individual animal models (IAM) and incorporate information on the 
relationship between all animals (Meyer, 1989b, 1991). Animal Model (AM) has 
influenced the use of the mixed model methodology in the statistical analysis of 
animal breeding data considerably. The AM includes a random effect for the 
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additive genetic merit of each animal, both for animals with records and animals 
which are parents only, incorporating all known relationship information in the 
analysis. This requires the inverse of numerator relationship matrix A. Hence it 
gained practical importance with the availability of a procedure to obtain A-1 
directly from a list of pedigrees (Henderson, 1976; Quaas, 1976) which made the 
AM computationally feasible for large data sets. Kennedy et al.  (1988) discussed 
the genetic properties of animal models, outlining how the AM can account for the 
change in genetic means and variances. Thus, the AM allows an optimal analysis of 
data involving multiple generations arising, for instance, from selection experiments 
(Sorensen and Kennedy, 1986; Kennedy, 1988). 
In terms of variance component estimation, the AM had changed thinking from the 
interpretation of covariance between relatives to a linear model framework where 
we determine variances directly by fitting corresponding random effects in the 
model of the analysis. Covariances between random effects for relatives are now 
taken into account by specifying the variance matrix of random effects accordingly. 
With the AM, the additive genetic variance is estimated as the variance of animals’ 
additive genetic merit instead of, for example, four times the variance between sires 
or twice the covariance between parents and offspring. The basic assumptions of the 
individual animal model (IAM) are : (i) e

2σ  is the same for all observations, (ii) 
dominance genetic effects are not important and are part of p

2σ  (iii) covariance 
between animal genetic effect and other random effects in the model are zero (iv) 
the relative values of variances must be known, and (v) additive genetic effect can 
include individual without any observations, and in that case corresponding design 
matrix contain zero columns for those individuals. It is intuitively obvious that an 
IAM is more correct for animal breeding data since it exploits all known 
relationships and can therefore account for changes in genetic variance due to both 
inbreeding and the established linkage disequilibrium (Kennedy and Sorensen, 
1988; Henderson, 1990a). Furthermore, the use of an IAM allows more random 
effects to be fitted, such as maternal and dominance effect, which are known to bias 
some genetic estimates (Barlow, 1978; Falconer, 1989; Meyer, 1989a; Webb and 
Bampton, 1990) The other advantages of the animal model are : (i) if data had been 
collected over many years then the possibility could arise that an individual female 
animal could appear as one of the measured individuals, but also as the dam of one 
or more other female animals. Thus, these equations combine information on an 
animal itself and its progeny, (ii) in an animal model genetic merit of the female to 
which sires were mated is also considered whereas the same is ignored while 
evaluating sires solely on their female progeny, and (iii) if only selected animals 
were allowed to reproduce then biases due to selection can be avoided by use of 
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numerator relationship matrix. The major disadvantage of an animal model is the 
larger order of the equations that need to be solved.  
Henderson and Quaas (1976) presented a comparable methodology for a multiple-
trait animal model. Sorensen and Kennedy (1984) reported that multiple-trait animal 
models improve the accuracy of prediction, when observations which formed the 
bases for selection are available, by utilizing information on correlated traits and by 
accounting for biases that occur with a single trait model. Hudson and Schaeffer 
(1984), based on the simulation study, reported that the sire model (SM), material 
grandsire model (MGSM), or SM with regression on dams’ predicted milk yield 
was 43-47% less accurate in evaluating sires than the animal's models for a random 
mating but selected population, and 65-67% less accurate under assortative mating 
and selection. Wiggans and Misztal (1987) opined that the main advantage of an 
animal model over a sire model is that all additive genetic relationships among 
animals contributes to an animal’s evaluation, which improves the accuracy of 
evaluation and avoids bias due to non-random mating and female selection. They 
mentioned the disadvantage that many more equations must be solved, and 
convergence may be slow because animal equations have off-diagonal elements 
contributed by the relationship matrix. Meyer and Burnside (1988) mentioned that 
sire model ignores both the dams of the cow (sire’s mate) and relationship between 
females, and therefore, sire proofs may be biased due to non-random mating or 
selection of cows. On the other hand, animals model evaluates both the sires and 
cows simultaneously, animals without records (like sires in dairy cattle) are 
evaluated from the information on their relatives’ records. The animal model takes 
into account all the relationship, adjusts for the non-random mating, account for 
selection bias, and adds to the accuracy by taking information from the correlated 
traits. Canon and Cheshais (1989) enumerated following advantages of animal 
model: (i) permits the use of all additive genetic relationships among animals as ‘a 
priori’ information in animals’ evaluation, (ii) the predicted genetic merit of sires is 
free from bias due to non-random mating since the genetic merit of dams of their 
progenies is taken into account, and (iii) the need for grouping is decreased to 
account for genetic trends.  
Under Indian conditions, the selection of dairy bulls using conventional methods 
(such as the contemporary comparison of sire evaluation) has long been carried out. 
The relationships between the individuals of the population are not taken into 
account in these methods of sire evaluation on which observations have been made, 
Sun et al, (2010). Therefore, for accurate estimation of breeding values (BVs), 
different advanced linear models are needed to be which lay more emphasis on the 
relationship between the individuals of the population. Both sire and animal models 
consider the relationship and inbreeding coefficient of the individuals of the 
population, as well as the model, including the numerator relationship matrix 
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(NRM). In most countries, the sire model is currently used for genetic evaluation of 
fertility traits, Interbull (2009). In the sire model, it is assumed that the mates are of 
equal merit which could result in biased estimates of BVs by Mrode (2005). And, in 
terms of stability and accuracy of the EBV, the animal model had a superior ability 
to predict breeding value Sun et al, (20090. The sire model has the advantage of less 
computational demand and might have good predictive properties under the 
conditions no genetic relationship exists between the sire and dam, that is there are 
no genetic relationships exist between dams, and thus mating is random. However, 
the assumed conditions necessary for accurate and unbiased EBV using a sire model 
are frequently violated in current dairy populations. If mates are non-randomly 
chosen in some manner, and if the model does not account for mating schemes, sire 
evaluation may be affected adversely and could be biased Schaeffer (1983). 
Comparison criteria of models; Information criteria of Akaike (AIC) and Bayesian 
(BIC) information criteria tests were used in the comparison of the models. In both 
tests, the most accurate model will be the one that has the highest negative AIC and 
BIC values. According to these two tests, we will select the model which fits better 
to data structures. The values of the Akaike information criteria and Bayesian 
information criteria will be obtained as follows Lukač et al., (2017).  
AIC = - 2 log (MLk) +2pk 
BIC = - 2 log (MLk) + pk log (n)     
Where,  
MLk= Maximum Log Likelihood for model k;  
pk = number parameter for model k;  
n = number of observations in model k; 
 
CONCLUSION 
Sires were ranked according to their breeding values for both models, which 
indicated that all sires would not rank the same for first lactation and lifetime traits. 
The top-ranking sires between the SM and AM were inconsistent for some traits. 
There were changes in the rank of the first top 10 sires of sire evaluation by the 
Animal and Sire Model. These results indicated that all sires would not rank the 
same for present data traits. Comparison between the Animal and Sire Models was 
done by estimating Information criteria of Akaike (AIC) and Bayesian (BIC) 
information criteria and found that Animal Model was having highest negative 
value for (AIC) and (BIC), indicating its superiority over than Sire Model for 
estimating genetic parameters. which suggested that the Animal Model would be 
the most adequate, while Sire Model has the largest AIC and BIC, which suggests 
that this model is not an adequate model for the evaluation of genetics parameters 
and concluded that the Animal Model would be the most adequate model for 
evaluation of genetics parameters. Using an animal model, particularly with the 
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multiple traits analysis, for estimating BV's showed higher genetic diversity 
compared with the sire model which would lead to a rapid genetic gain in the future 
generations Dangi (2020).  
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