Poultry Breeding: From Domestication to Genomic Tools: A Review

  • Shambel Taye Ethiopian Institute of Agricultural Research, Debre Zeit Agricultural Research Center, Bishoftu, Ethiopia
Keywords: Bioinformatics, Conventional breeding, Genomic selection, Marker-assisted selection

Abstract

The current review article aims to briefly highlight the most important genomics technologies used to create breeds that are productive and well-adapted in a given circumstance. It also emphasizes the role of bioinformatics in modern chicken breeding. Advances in genomics information technologies are valuable opportunities for achieving the required improvement, but their implementation implies access to technical and financial resources with suitable adjustment in the local situation. The majority of domesticated livestock species are chickens. The foundation for genomics has been established by the dramatic advancement of molecular genetics. The applications of the newest generations of molecular markers are incredible tools for farm animals' genetic advancement. These markers offer more precise genomic data and an improved understanding of the animal genetic resources. Genomics tools are essential for the accurate, fast, and efficient breeding of animals. Compared to other domesticated animals, chicken is widely accepted and has little to no taboos in terms of cultures, religions, and society. About resolving the issues of food security in a world affected by climatic change and human population expansion, it offers a unique genetic resource due to its resilience to a variety of environmental circumstances and demonstrated potential for breeding improvement. The historical evolutionary history of the chicken has been reconstructed thanks to recent investigations that have revealed new information about its DNA. Breeders of chickens must move more quickly towards creating and choosing enhanced breeds that can withstand environmental stress without compromising production and productivity.

Downloads

Download data is not yet available.

References

Adebabay, K. (2018). Whole Genome Based Characterization of Indigenous Chicken Populations in Ethiopia. PhD Dissertation, Addis Ababa University, Ethiopia, pp 470.

AVIAGEN. (2012). Aviagen includes genomics information for the on-going improvement of its broiler products.

Bekele, G., Kebede, K., & Ameha, N. (2015). On-farm phenotypic characterization of indigenous chicken and their production system in Bench Maji Zone, South Western Ethiopia. Science, Technology and Arts Research Journal, 4(1), 68-73.

Bekerie, E. M., Goraga, Z. S., Johansson, A. M., & Singh, H. (2015). Genetic diversity and population structure of four indigenous chicken ecotypes representing South and South Western Ethiopia. International Journal of Genetics, 5(1), 18-24.

Boichard, D., Ducrocq, V., Croiseau, P., & Fritz, S. (2016). Genomic selection in domestic animals: principles, applications and perspectives. Comptes rendus biologies, 339(7-8), 274-277.

Chambers, J. R. (1990). Genetics of growth and meat production in poultry. Poultry breeding and genetics, 599-644.

Crawford, R. (1990). Chapter 1. Origin and history of poultry species. Crawford, RD, editor. Poultry Breeding and Genetics.

Crispo, M., Mulet, A. P., Tesson, L., Barrera, N., Cuadro, F., dos Santos-Neto, P. C., ... & Menchaca, A. (2015). Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PloS one, 10(8), e0136690.

Dekkers, J. C. (2004). Commercial application of marker-and gene-assisted selection in livestock: strategies and lessons. Journal of animal science, 82(suppl_13), E313-E328.

Dekkers, J. C., & Hospital, F. (2002). The use of molecular genetics in the improvement of agricultural populations. Nature Reviews Genetics, 3(1), 22-32.

Desta, T.T. (2015). Phenomics and genomic landscape of Ethiopian village chickens (Ph.D.). University of Nottingham.

Diamond, J. (2002). Evolution, consequences and future of plant and animal domestication. Nature, 418(6898), 700-707.

EBI (Ethiopian Biodiversity Institute). (2016). Government of the Federal Democratic Republic of Ethiopia. Ethiopia’s Fifth National Report to the Convention on Biological Diversity. Ethiopian Biodiversity Institute, Addis Ababa, Ethiopia

Egahi, J. O., Dim, N. I., Momoh, O. M., & Gwaza, D. S. (2010). Variations in qualitative traits in the Nigerian local chicken. International Journal of Poultry Science, 9(10), 978-979.

Elferink, M. G., Megens, H. J., Vereijken, A., Hu, X., Crooijmans, R. P., & Groenen, M. A. (2012). Signatures of selection in the genomes of commercial and non-commercial chicken breeds. PloS one, 7(2), e32720.

Emebet, M. (2015). Phenotypic and genetic characterization of indigenous chicken in South west Showa and Gurage Zones of Ethiopia. PhD Dissertation, Addis Ababa University, Ethiopia

FAO. (2013). FAO Statistical Yearbook 2012, Food and Agriculture Organization of United Nations, Rome

FAO. (2020). “FAOSTAT Database.” Poultry Production.

Food and Agriculture Organization. (2007). The State of the World’s Animal Genetic Resources for Food and Agriculture, Rome.

Fulton, J. E. (2012). Genomic selection for poultry breeding. Animal Frontiers, 2(1), 30-36.

Getu, A., Alemayehu, K., & Alebie, A. (2015). Status, Characterization and Conservation Practices of Local Chicken Ecotypes, Ethiopia. International Journal of Scientific Research in Science and Technology IJSRST, 1(5), 2395-6011

Gheyas, A. A., Vallejo-Trujillo, A., Kebede, A., Lozano-Jaramillo, M., Dessie, T., Smith, J., & Hanotte, O. (2021). Integrated environmental and genomic analysis reveals the drivers of local adaptation in African indigenous chickens. Molecular biology and evolution, 38(10), 4268-4285.

Goraga, Z., Weigend, S., & Brockmann, G. (2012). Genetic diversity and population structure of five Ethiopian chicken ecotypes. Animal genetics, 43(4), 454-457.

Hall, S. J., & Bradley, D. G. (1995). Conserving livestock breed biodiversity. Trends in ecology & evolution, 10(7), 267-270.

Hassen, H., Neser, F. W. C., De Kock, A., & van Marle-Köster, E. (2009). Study on the genetic diversity of native chickens in northwest Ethiopia using microsatellite markers. African journal of Biotechnology, 8(7) : 1347–1353.

Hayes, B. (2007). Quantitative trait loci mapping, marker assisted selection, and genomic selection. Iowa State University.

Hayes, B. J., & Goddard, M. E. (2007). Genomic selection. J. Animal. Breed. Genet, 8, 323.

Hayes, B. J., Lewin, H. A., & Goddard, M. E. (2013). The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends in Genetics, 29(4), 206-214.

Khare, V., & Khare, A. (2017). Modern approach in animal breeding by use of advanced molecular genetic techniques. Int. J. Livest. Res, 7(1), 1-22.

Kim, G. D., Lee, J. H., Song, S., Kim, S. W., Han, J. S., Shin, S. P., ... & Park, T. S. (2020). Generation of myostatin‐knockout chickens mediated by D10A‐Cas9 nickase. The FASEB Journal, 34(4), 5688-5696.

Kim, J. I., & Kim, J. Y. (2019). New era of precision plant breeding using genome editing. Plant Biotechnology Reports, 13, 419-421.

Lawal, R. A., & Hanotte, O. (2021). Domestic chicken diversity: Origin, distribution, and adaptation. Animal Genetics, 52(4), 385-394.

Lawal, R. A., Al-Atiyat, R. M., Aljumaah, R. S., Silva, P., Mwacharo, J. M., & Hanotte, O. (2018). Whole-genome resequencing of red junglefowl and indigenous village chicken reveal new insights on the genome dynamics of the species. Frontiers in genetics, 9, 264.

Liu, T., Qu, H., Luo, C., Shu, D., Wang, J., Lund, M. S., & Su, G. (2014). Accuracy of genomic prediction for growth and carcass traits in Chinese triple-yellow chickens. BMC genetics, 15(1), 1-8.

Liu, Y. P., Wu, G. S., Yao, Y. G., Miao, Y. W., Luikart, G., Baig, M., ... & Zhang, Y. P. (2006). Multiple maternal origins of chickens: out of the Asian jungles. Molecular phylogenetics and evolution, 38(1), 12-19.

Malomane, D. K., Simianer, H., Weigend, A., Reimer, C., Schmitt, A. O., & Weigend, S. (2019). The SYNBREED chicken diversity panel: a global resource to assess chicken diversity at high genomic resolution. BMC genomics, 20, 1-15.

Melesse, A., Maak, S., Schmidt, R., & Von Lengerken, G. (2011). Effect of long-term heat stress on some performance traits and plasma enzyme activities in Naked-neck chickens and their F1 crosses with commercial layer breeds. Livestock science, 141(2-3), 227-231.

Melesse, A., Tadele, A., Assefa, H., Taye, K., Kebede, T., Taye, M., & Betsha, S. (2021). Assessing the morphological diversity of Ethiopian indigenous chickens using multivariate discriminant analysis of morphometric traits for sustainable utilization and conservation. Poultry Science Journal, 9(1), 61-72.

Meuwissen, T. H., Hayes, B. J., & Goddard, M. (2001). Prediction of total genetic value using genome-wide dense marker maps. genetics, 157(4), 1819-1829.

Meuwissen, T., Hayes, B., & Goddard, M. (2016). Genomic selection: A paradigm shift in animal breeding. Animal frontiers, 6(1), 6-14.

Miao, Y. W., Peng, M. S., Wu, G. S., Ouyang, Y. N., Yang, Z. Y., Yu, N., ... & Zhang, Y. P. (2013). Chicken domestication: an updated perspective based on mitochondrial genomes. Heredity, 110(3), 277-282.

Morris, K. V. (2012). Non-coding RNAs and epigenetic regulation of gene expression: Drivers of natural selection. Caister Academic Press.

Mwacharo, J. M., Bjørnstad, G., Han, J. L., & Hanotte, O. (2013). The history of African village chickens: an archaeological and molecular perspective. African Archaeological Review, 30, 97-114.

Negassa, D., Melesse, A., & Banerjee, S. (2014). Phenotypic characterization of indigenous chicken populations in Southeastern Oromia Regional State of Ethiopia. Animal Genetic Resources/Resources génétiques animales/Recursos genéticos animales, 55, 101-113.

Nigussie, D., Van der Waaij, L. H., Tadelle, D., & Van Arendonk, J. A. M. (2010). Production objectives and trait preferences of village poultry producers of Ethiopia: implications for designing breeding schemes utilizing indigenous chicken genetic resources. Tropical Animal Health and Production, 42(7), 1519-1529.

O’Sullivan, N. P., Preisinger, R., & Koerhuis, A. (2010). Combining pure-line and cross-bred information in poultry breeding. In Proceedings of the World Congress on Genetics Applied to Livestock Production, Volume Genetic Improvement Programmes: Design of Selection Schemes Exploiting Additive and/or Non-Additive Effects–Lecture Sessions (p. 0984).

Park, T. S., Park, J., Lee, J. H., Park, J. W., & Park, B. C. (2019). Disruption of G0/G1 switch gene 2 (G0S2) reduced abdominal fat deposition and altered fatty acid composition in chicken. The FASEB Journal, 33(1), 1188-1198.

Picard Druet, D., Varenne, A., Herry, F., Hérault, F., Allais, S., Burlot, T., & Le Roy, P. (2020). Reliability of genomic evaluation for egg quality traits in layers. BMC genetics, 21, 1-11.

Rachma, A. S., Harada, H., Dagong, M. I. A., Rahim, L., & Prahesti, K. I. (2013). Study of body dimension of Gaga'chicken, germ plasm of local chicken from South Sulawesi-Indonesia. International Journal of Plant, Animal and Environmental Sciences, 3(4), 204-209.

Ravindran, V. (2013). Main ingredients used in poultry feed formulations. Poultry development review (ed.) FAO, 67-69.

Ricroch, A. (2019, August). Global developments of genome editing in agriculture. In Transgenic research (Vol. 28, pp. 45-52). Springer International Publishing.

Rubin, C. J., Zody, M. C., Eriksson, J., Meadows, J. R., Sherwood, E., Webster, M. T., ... & Andersson, L. (2010). Whole-genome resequencing reveals loci under selection during chicken domestication. Nature, 464(7288), 587-591.

Shafi, A., Zahoor, I., Haq, E., & Fazili, K. M. (2019). Impact of bioinformatics on plant science research and crop improvement. Essentials of Bioinformatics, Volume III: In Silico Life Sciences: Agriculture, 29-46.

Slatkin, M. (2008). A Bayesian method for jointly estimating allele age and selection intensity. Genetics research, 90(1), 129-137.

Tadelle, D., Kijora, C., & Peters, K. J. (2003). Indigenous chicken ecotypes in Ethiopia: growth and feed utilization potentials. International Journal of Poultry Science, 2(2), 144-152.

Taha, F.A. (2003). Patterns of world poultry consumption and production. In: The Poultry Sector in Middle-Income Countries and Its Feed Requirements, The Case of Egypt, E.R.S., Washington, DC, USA, Agriculture and Trade Report No. WRS03-02. pp. 3-14.

Telugu, B. P., Park, K. E., & Park, C. H. (2017). Genome editing and genetic engineering in livestock for advancing agricultural and biomedical applications. Mammalian Genome, 28, 338-347.

Teneva, A. (2009). Molecular markers in animal genome analysis. Biotechnology in animal husbandry, 25(5-6-2), 1267-1284.

Tirawattanawanich, C., Chantakru, S., Nimitsantiwong, W., & Tongyai, S. (2011). The effects of tropical environmental conditions on the stress and immune responses of commercial broilers, Thai indigenous chickens, and crossbred chickens. Journal of Applied Poultry Research, 20(4), 409-420.

Tuiskula-Haavisto, M., Honkatukia, M., Vilkki, J., de Koning, D. J., Schulman, N. F., & Maki-Tanila, A. (2002). Mapping of quantitative trait loci affecting quality and production traits in egg layers. Poultry science, 81(7), 919-927.

VanRaden, P. M., Van Tassell, C. P., Wiggans, G. R., Sonstegard, T. S., Schnabel, R. D., Taylor, J. F., & Schenkel, F. S. (2009). Invited review: Reliability of genomic predictions for North American Holstein bulls. Journal of dairy science, 92(1), 16-24.

Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., ... & Kalush, F. (2001). The sequence of the human genome. science, 291(5507), 1304-1351.

Walugembe, M., Bertolini, F., Dematawewa, C. M. B., Reis, M. P., Elbeltagy, A. R., Schmidt, C. J., ... & Rothschild, M. F. (2019). Detection of selection signatures among Brazilian, Sri Lankan, and Egyptian chicken populations under different environmental conditions. Frontiers in Genetics, 9, 737.

Wang, X., Niu, Y., Zhou, J., Zhu, H., Ma, B., Yu, H., ... & Chen, Y. (2018). CRISPR/Cas9‐mediated MSTN disruption and heritable mutagenesis in goats causes increased body mass. Animal genetics, 49(1), 43-51.

West, B., & Zhou, B. X. (1988). Did chickens go north? New evidence for domestication. Journal of archaeological science, 15(5), 515-533.

Wolc, A., Kranis, A., Arango, J., Settar, P., Fulton, J. E., O'Sullivan, N. P., ... & Dekkers, J. C. M. (2016). Implementation of genomic selection in the poultry industry. Animal Frontiers, 6(1), 23-31.

Wolc, A., Kranis, A., Lamont, S., Arango, J., Settar, P., Fulton, J. E., ... & Dekkers, J. (2014). Applications of genomic selection in poultry. In Proceedings of the 10th World Congress on Genetics Applied to Livestock Production. Vancouver.

Woldekiros, H. S., & D'Andrea, A. C. (2017). Early evidence for domestic chickens (Gallus gallus domesticus) in the Horn of Africa. International Journal of Osteoarchaeology, 27(3), 329-341.

Zeuner, F. E. (1963). A history of domesticated animals. Hutchinson, London.

Published
2023-09-14
How to Cite
1.
Taye S. Poultry Breeding: From Domestication to Genomic Tools: A Review. Glob. J. Anim. Sci. Res. [Internet]. 2023Sep.14 [cited 2024May10];11(3):89-105. Available from: http://gjasr.com/index.php/GJASR/article/view/183
Section
Review Articels